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Chapter 15

Exploiting replication in
distributed systems

K. P. Birman and T. A. Joseph

15.1 Replication in directly distributed systems

TI_ chapter examines techniques for replicating data and execution in directly

distributed systems: systems in which multiple proc.em_ interact directly with one

another while continuously respecting conm'aints on their joint behaviour.

Directly distributed systems are of=ten required to solve difficult problems, rang-
ing from management _" replicated data to dynamic reconliguration in respome

to failures. It will'be shown here that these problems reduce to more primitive,

order-baaed comistency problems, which can be solved using primitives such as

the reliable broadcut protocol, di_maed _ 14. Moreover, given a sy_

tem that implements reliable broadc_ primitives, a flexible set of high-level
'tooh' can be provided for building a wide variety _ directly distributed applica-

tion pr_ran-m.

15.1.1 U_ng replication to enhance availabilky and fault-tolerance

Replication is olten central to solving distributed computing problems. For

example, modularity and price-performance comlderatiom argue for decentrali-

zation of software in factory automation settings. However, many factories con-

tain devices controlled by dedicated processors that require real-time respome.

Any delay impmed on the controllers by the network must be bounded. In a
system where data is not replicated or cached, this would be hard to guarantee

because of pomible packet Ires and unpredictable load on remote servers. Distri-

buted real-time systems thus need ways to replicate information that may be

needed along time-critical paths.
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Replication can be a powerful toot for solving other types of problems. For

example, in a factory automation setting, distributed exemt/on may be used by

applicatiom that need to subdivide tasks by concurrently allocating multiple
procemes (or multiple devices) to a single piece of work. In order to distribute

the execution of a single request over a set of high-speed processes, however, one

must also replicate any im'ormation that they use to coordinate their actions. A

centralized 'coordinator' would represent a single point of failure and a potential

performance bottleneck.

Fault-tolerance requirements are another major reason for replicating data.
In a non-distributed setting a failure rarely affects anything but the user of the

crashed program or machine. In a network, however, the effects of a crash can

ripple through large numbers of machines. A program that will survive the

failures of programs with which it interacts must have access to redundant copies

of critical resources and ensure that its state is never dependent, even indirectly,

on information to which only the failed program had access. It may also be
necessary to maintain backup processes that will take over from a failed procem

and complete time-critical computations or computations that have acquired
mutual exclusion on shared resources.

15.1.2 The Irade off between shared memory and _ passing

At the heart of any distributed system that distributes or replicates information is

the problem of transf_ir_ information between cooperating procesa_. Broadly

speaking, this can be done in one of two ways: by permitting the processes to
interact with some common but passive resource or memory, or by supporting

message exchange between them. There are advantages and disadvantages amo-

ciated with each approach, hence the most appropriate style of information
transfer for a particular problem must be determined by an analy_ of the

characteristics of that problem. For example, most database systems use the

shared memory paradigm. In other settings, however, a shared resour_ might
represent a bottleneck that could be avoided using replication and direct

message-based interactions between the processes using that resource.

This point is important because the approach used to replicate data depends

strongly on the way in which p_ will interact. For example, considerable

recent work (Rashid ,,t a/. (1987)) has been invested in the development of distri-
buted virtual memory schemes, an approach introduced in the Apollo Domain

operating system (Apollo (1985)). Synchronization in such systems is often based

on transactional approaches, such as the database replication techniques

described in Chapter 12. The shared-memory approach to replication and syn-

chronization thus leads to a whole school of thought concerning distributed pro.

gram design and development.
As noted earlier, in this chapter applications in which processes interact

directly with one another and where the actions taken by one procem may be

explicitly coordinated with those taken by another process are of particular

interest. The style of distributed programming needed to support this sort of
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application, and the most appropriate tooh for implementing it, are substantially
different than for the shared memory and wansactional case.

Below, we start by identifying a set of characteristics of problems that call for
direct interactions or cooperation between the processes that solve that problem.

This characterization leads to a list of services that a directly distributed system

may require. Next, we look at a number of systems in order to understand how

they address the problems in this list. Finally, we examine a particular model
for solving these problems in a message-passing environment and a set of solu-

tiom that can be easily understood in terms of this model.

15.1.3 Auumpliom and limitatiom

Although this chapter explores a number of approaches to replication and distri-

buted consistency, some amumptiom are made that limit the applicability of the
treatment. The model used here is intended to match a typical local area net-

work or a loosely coupled multiproceasor. The programs and computers in such

systems fail benignly, by crashing without sending out incorrect memages. Pro-
cessors do not have synchronized clocks, hence the failure of an entire site can

only be detected unrdiably, using timeouts. Message communication is assumed
to be reliable but bursty, because packets can be lost and may have to be
retrammitted.

Two major problems that arise in LAiN settings wiU not be considered here.

The first is network partitioning, where the network splits into subnetworks

between which communication is impaired (for example, if a LAN bridge falh).

Providing replication that spans partitiom is a difficult problem and an active
research area. Secondly, problems that place real-time constraints on distributed

algorithms or protocols will not be di_uued here. Real-time issues are hard to

isolate; once they are introduced, the entire system must often be treated from a

real-time perspective. That is, although our methods are potentially useful in

systems for which a real-tirne comtraint leads the designer to dedicate a com-
puter to some device, it will be amumed that the real-t/me aspects of such prob-

lems do not extend beyond the control program itself.

15.2 Comistent distributed behaviour in digril_ted _rm

When processes cooperate to implement some distributed behaviour, an impor-
tant issue is to ensure that their actions will be 'mutually consistent'. Not

surprisingly, the precise meaning that one att:,ches to consistency has important

implicatiom throughout a distributed systems that presents coordinated
behaviour. As shown in previous chapters, tramactional serializability is a

widely accepted form of comistency. In intuitive terms, a transactional system
acts as if proceues execute one by one, with each process modifying data objects

in an atomic way that can be isolated from the actiom taken by other processes.

This leads to a natural question: should a/l types of distributed consistency be
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viewed as variant forms of transactional consistency, or are there problems that
can only be addressed using other methods?

Looking at the factory automation setting, one finds that whereas shared

shared memory problems fit well into the standard tramactional framework,

directly distributed problems generally do not. Consider the following two
examples:

• Budd sofluare for monito_ 2oh status and rmun_ mmtoms. Updates will be
doneby t_ uanhat_s (pantttv, s on hand), "ull con_ii_s' (gequtstsfor mtm_ and
c/roSes injob aaaa), a_l from a .nual .mqor_ra s_ (c_nges in pncu, _ti_ries

from supples, changes /n job prom,s, and so on). _er_s will be done from
managerialo_icts tAroughouft/_ factory complex.

• De_top soflm_ for a ¢_lt cont_otlc¢operating a set of drills. F__ drill is iadt_-
d_tly controllM by a dtdicatcd m_essov. Tat celt as a u_l¢ recoils a pitct of
work to do, to&etA_,u_th a hst of l_atfim.g stets and toltratwes for the holes to be
drilled. It must ¢_iciz_y schtd_ thts work among ths drills. DrdlJ am go o_iimfor
mamtsnan_ or _ of b_ I_takin£ or cornsonhm whilt tat ¢*ll is actu_, howt t_
scAtdutta&tm_Mtm is dynmic. $or_ drills art bttt_ suited to _ tow-precmon
work, u._ils othtrs are mirth for &g_r h_gh-/_cision aanic. Finally, it is _ m
!_o1¢is drilled twtct, ¢o¢n _f a drill bit b_eaks bof_ it is fully drill_a_ becans¢this
aaadd r_sult in a mvy low precu_r_ Instead, an accurat_list of partially drilled lugsa
sSoula _ prodamt for a taaramUdmU_n to c_dc and r_dntl m_rnually.

These two problems illustrate very different styles of diatributed computing, and
distributed consistency means something different for each. The former clearly

lends itself to a tramactional shared memory approach. One would configure

the various programs into a 'star', with a database at the centre, perhaps repli-

cated for fault-tolerance. Progratm throughout the network interact through the

database. Tramactiom are the natural comistency model for this setting. The
easential observation to make is that the procemes share data but are md_f_d_t.

By adopting a u-amactional style of interaction, they can avoid tripping over one
another. Moreover, tramactiom provide a simple way to ensure that even if
failures occur, the database remains intact and comistent.

Now consider the second problem. A star configuration seems much less

natural here. The procemes in a decentralized cell controller will need explicit

knowledge of one another in order to coordinate their actiom on a step-by-step

basis. They need to recontigure in response to events that can occur unpredict-
ably, and to ensure the consistency of their views of the system state and one-

another's individual states. When a control process comes online aRer being
offiine for a period of time, it will have to be reintegrated into the system, in a
consistent way which may have very little to do with its state at the time of the

failure. When a procem goes ot_ine, the processes that remain online need to

assume responsibility for finishing any incomplete work and generating the list of
boles to be manually checked. Moreover, it is not reasonable to talk about

'aborting' partially completed work, since this could result in redrilling a hole.



1 _ EXPLOITING REPLICATION IN DISTRLBUTED SYSTEMS 323

What should comistency mean in problems like this? AU of the above con-
sideratiom run contrary to the spirit of a transactional approach, where the goal

is serializability -- am-interference between processes. A process in a trans-

actional system is encouraged to run as if in isolation, whereas the ceil controller

involves explicit interactions and interdependencies between processes. Tram-

actions use aborts and rollback to recover from possibly inconsistent states, but

in this example, rollback is physically impossible. On the other hand, although

the kind of consistency required here may not be transactional, one would not
want to go to the extreme of concluding that there is no meaningful form of con-

sistency that applies in this setting. Certainly, there should be a reasonable

'explanation' for what each control process is doing, and this explanation should

be in accordance with the cell controller specification. However, the explanation

should be one that holds ¢armm_us/y, not just for 'committed' operations as in

case of tramactions. That is, a set of drills that operate concurrently should

behave in mutually comistent ways at all tir_s.
This leaves us with two choices. One option is to look at how the trans-

actional model could be extended to cover these new requirements. The idea of

extending transactions is hardly a new one, and has previously led to mechan-
isms like top-hzcl transactiomt (l._kov a al. (1987)), mixtures of serializable and

non-serializable behaviours (Herlihy (1986a); Lynch, Blaustein, and Siegel
(1986)), and specialized algorithms for concurrently accessing data structures

like B-tree indexes. The trouble is that these introduce complexity into a model

that was appealing for its simplicity. Moreover, these methods have been

around for some time, and have proved appropriate only for a narrow set of

problems. The second option -- pursued here -- is to develop a different style

of distributed computation better matched to problems Kke the ones arising in a

cell controller. The focus of this style of computation wiU be on enabling pro-
grams to reason consistently about one-another's states and actions.

15.3 A toolkit for directly digrilmted programming

One can think of a system that implements transactions as a collection of toots

for solving problems involving shared data. These tools provide for synchroniza-

tion, data access and update, transaction commit, and so forth. In this section,

the problem of building directly distributed software by postulating a set of tools
for helping directly distributed processes to coordinate their actiom is discussed.

Later, a variety of systems wiU be examined in the light of how close they come

to solving these problems.

t A top.level u-ansactian is emauiaUy a way ¢f sending a mmsa_ from 'within' the scope of an un-

committed trama_ma to other u'anuctiom runzdng oucaide that scope. It provides an escape from

the shared memory paradigm into the rrumage passing one. The fact that such a m_tanism is

needed within transactional zygema is _rcng widence that no dngie approach _ all type= of

digribtaed sy_em.



-324 K.P. BIRMAN AND T. A. JO6F.PH

15.3.1 Components of the toolkit

What sorts of tools would the builder c f a directly distributed system need?
Although .or exhaustive, the list of to_ls that follows is intended to be fairly
extensive.

• Process groups: A way to form _._ a.lociation between a set of processes

cooperating to solve a problem.

• Group communication: A location-tramparem way to communicate with

the members of a group or a list of groupa and proceBes. In some systems,

group communication consi_ only of a way to find some single member of

a named group. In others, communication is broadcast-orientedt and

atom/c, meaning that aU members of the destination group receive a given

message unless a failure occurs, in which case either all the survivors receive

it or none does. A problem that must be acldremed is how group communi-

cation should work when the group membership is changing at the time the
communication takes place. Should the broadcast be done before the

change, aider it, or is it acceptable for some group members to observe one

ordering and some the other? Should memage delivery to an unreapomive
destination be retried indefinitely, or eventually intercupted -- with the

attendant risk that the destination was just experiencing a tramient failure

and is actually still operational? We will see that the way in which a sys-
tem resolves theae haues can limit the type of problems that pn3cem groul:8

in the system can be used to solve.

• Replicated data: A mechaniam permitting group members to maintain

replicated data. Mint approaches provide a 1-copy comistency property,

analogous to l-copy serializability.

• Synchronization: Facilities for _nchronization of concurrent activities that

interact through shared data or reaources.

• Distributed execution: Facilitiea for partitioning the work required to solve a

problem among the members of a process group.

• State monitoring mechanisms: Mechanisms for monitoring the state of the

system and the membership of procesa groups, permitting proceasea to react

to the failure of ocher group members.

• Reconfiguration meehanima: Facilities with which the system can adapt

dynamically to failures, recoveries, and loau changes that impact on work

p_g strategies.

A group broadc.mK should not he _ wlth a hazdware broadcaK. A _p hroadr.a_ pro-

videa a way m coaummir.ate with all memben c_" some group. It may or may not make uae or"

hardware facilities fe¢ broadcmfing to all the machines connected to • local anna rmwo_ He_-e, un-

lem it ia expfic.i(ly izldicated that • b.azxtware ha-oadc.mt h; beizlg discumed, the team bcoadc.a_ will aJ-

way* mean brtstde.a_ to a group,
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Recovery mechanisms: Mechanisms for automating recovery, which could

range from a way to restart services when a site reboots to facilities for rein-

tegrafing a component into an operational system that is actively engaged

in distributed computations.

15.3.2 Consistency viewed as a tool

Let us return to the issue of consistency. In the context of a set of tools, a

mechanism that provides for consistent behaviour can also be understood as a

sort of tool, but it is a more abstracted one than the sorts of 'tools that do

specific things' Listed above. For example, in a shared memory setting, comistent

behaviour generally means that the accesses made to the data by client pro-
grams are serializable (Bernstein and Goodman (1981)), and that some invariant

holds on the state of programs themselves. Ser,:.iizability is thus a tool for build-
ing transactional systems. In a directly dismbuted setting, there is no data

manager or shared data items, and hence the serializability constraint is loat.
Nonetheless, one needs a way to establish that the processes in the system, taken

as a group, satisfy some set of system-wide invariants in addition to local ones on
their states.

Any notion of distributed comistency will be incomplete unless it takes into

account the asynchronous nature of the systems in question. In particular, a

definition of consistency bated on respectil_ global properties or invariants must
somehow take time into account. When one says that two actions taken at

different locations axe in accord with a global predicate, that statement will have

no meaning until it is decided _ the predicate should be evaluated. This

temporal dependency is particularly striking if the notion of consistency changes

while the system executes. Thus, comifem behaviour in an idle cell controller is

quite different from consistent behaviour while work is present. Taking a more

extreme example, conaistent behaviour of a distributed program for controlling a

nuclear reaction me,am one thing during normal operation, but something
entirely different if a cooling pump malfunctiona. Since the switch from one rule

to another cannot occur instantaneoualy, a notion of consistency both simple and
'dynamic' is needed.

Distributed systems designers have approached the consistency issue in several

ways. Much theoretical work starts with a rigorous notion of distributed con-

sistency. However, this work 01ten relies on simplified system models that may

not corrmpond to real networks. For example, the theoretical study of Byzantine

agreement establishes limits on the achievable behaviour of a distributed agree-

merit protocol. The failure modes permitted include malicious behaviours that

real systena do not experience, and the model axsumes that all processors share a
common clock (so that they can run in lock-step). Unfortunately, however, real

systems generally have multiple, independent procemor clocks. Even if this were

not the case, the coat of Byzantine agreement turns out to be very high. Simi-

larly, innumerable papers have presented complex protocols to solve distributed

problem, remarkably few of which have ever been implemented. Any
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practitioner who seam the literature discovers that many of these are in fact not
'implementable' because they make unrealistic assumptions.

At the other extreme, most existing 'distributed' operating systems provide llt.

tie more than a message-passing mechanism, o_en only available through a

cumbersome and inflexible communication subsystem. Systems like this simply
abandon any rigorous form of consistency in favour of probabilistic behavioural

statements. When attempts have been made to formally specify the behaviour of

real distributed systems, the results have often included so much detail that it

becomes hard to separate the abstract behaviour of the system from the imple-
mentation and interface it provides. Thus, a formal specification of a distributed

system often includes detaih of how the message channeh work, how addreming
is handled, and so forth. While this information is unquestionably of value in

designing applicadom that depend on a precise characterization of system

behaviour, high level issues such as 'consistency' are obscured by such a treat-

ment. As we will see, few of the problems in our list could be solved using a
me_age-paasing approach, and a highly detailed formalism describing exactly

how the message-passing mechanism works offers little help.
An intermediate approach, which will be adopted here, restricts system

behaviour in order to simplify the solutiom to problems like the ones that arise in

the toolkit. On the one hand, these restrictions must be efficiently implementable.
On the other, it must be pomible to talk in abstract terms about how distributed

programs execute in the system, what it means for them to behave consistently,
and how comistency can be achieved. Specifically, given a distributed system, it

should be pomible to describe its behaviour formally in a way that will help estab-

lish the correctness of algorithms that run under it. If this requires restrictions on

the permissible behaviour of the system, it will be necesaary to understaxaxi how
those reatricdom can be enforced and how weak they can be made.

15.3.30thea" prolm_es needed in a toolkit

More will be needed than a set of tool* if the intention is to solve real-world dis-

tributed computing problems. Que_om of methodology, efficiency of the imple-

mentation, and sealability must also be addressed. For example, it is easy m

solve database problen_ using tramactiom. To be able to say the same about
directly distributed sottware, one would need to demonstrate that the tool* lead

to a natural and intuitive programming style in which problems can be isolated

and solved one by one, in a step-wise fashion. Also, it must be easy to eatablhh

that the solutions will tolerate the concurrency and configuration changes

chamtcterizing asynchronous distributed systems. That is, 8iven a notion of con-

sistency, it should be rea_nably easy to establish that a particular sy,tem in fact
achieves corufistent behaviour.

We will also want to pose questions about the extent to which the tool*
influence each other. Ideally, one would want tool, that operate completely

independently from one another. Otherwise, by extending the functionality of a
system in one way, one would risk breaking the preexisting code. As we will see,
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'orthogonality' of a set of tools is arrived at using mechanisms closely related to
the ones by which consistency is achieved.

Efficiency is also an important consideration. Nobody will use a set of tools unless

it yields programs that perform as well (or better) than software built using other

methods. Moreover, the absolute level of performance achieved must be good
enough to support the kinds of applications likely to employ direct distribution.

A final issue relates to questions of scale. Our tools treat direct distribution as

a problem 'in the small'. One also needs to construct larger systems out of com-

ponents built using these tools, in a way that isolates the larger-system isaues

from the implementation of the directly-distributed components of which it is

built. Otherwise, it may be impractical to talk about system design and inter-
face issues without simultaneously addressing implementation details.

15.4 System support for direct interactiom between processes

A variety of existing systems provide facilities that could be used when building
directly distributed software. Below, we look at how close these come to addrem-

ing the major items in our list of tools.

15.4.1 Basic RPC mechanisms and neated transac_m

Most operating systems provide remote procadare calls (Birrell and Nelson (1984)).

The technological support for remote procedure calh has advanced rapidly dur-
ing the past decade, and sub-millisecond RPC times for inter-site communication

should be common in operating systems in the near future. RPC does not, how-

ever, address any of the problems in the above list. Thus, the programmer, con-
fronted by a direct distribution problem, would be in a very difficult situation

when using a system in which RPC is the primary communication mechanism.

Short of building a complex application-level mechanism to resolve these prob-
lema, there would seem to be no way to build directly diatributed aoRware using
an unadorned RPC facility.

To make this more concrete, let us consider a specific problem that might arise
in the context of the toolkit. Among the many issues that the tools must address, a

key problem is to synchronize the actiom of a set of processes that are performing

some action concurrendy. This is an instance of the well-known 'mutual exclu-

sion' problem, and there is no doubt that any system suppor'dng direct interactiom

between processes will need a mutual exclusion mechanism. A typical solution
might implement a token managed with r_,_ like the following:

a ut of_ shares emct_ 0,w _py of a to/_ u_ op,.rat_ to_ a,d requ_t

way that the t,okcn is _ _rmmu, ntly lost _ all princesses fai_ and duplicate

toL_ ,u_ anu within the op_,atmal sa. New pa_sses can join the sa _tanu'.
cal_.
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How v..dd one go about solving this problem using remote procedure calls?

Typical ix_ C implementations detect failures using timeouts. Since timeouts can

be inaccurate, an agreement protocol is needed to deal with token-holder

failures. For example, one could try to inform all operational processes of each

pass so that they know which process to request the token from. However, in
addition to the inaccuracy of the failure detection mechanism, the solution must

deal with the possibility that the token could be in motion at the time of a
request. Dynamic group membership changes make these problems even more

complicated.

Although there are several systems that extea_A RPC to deal with failures and

concurrency, their orientation has been towards the shared memory paradigm,
by extending RPC into a form of nesud tramaamn. In a sense this is not surpris-

ing, since RPC is a pairwise mechanism in which the caller is the active partici-

pant and the called process is passive until it receives a request from the caller

-- a structure strongly evocative of the relatiomhip between a transaction
manager and a set of data rnanagen on which it performs operations in a data-

base setting. The ARGUS language and the CAMELOT system both take this

approach, with ARGUS focusing on linguistic aspects of the problem and
CAMELOT on performance and on creative use of virtual memory mechanisms.
For brevity, neither of these systems will be discussed in detail here. However, it

is important to recognize that the token passing problem remains difficult to
solve in either system, and the same can be said for many (not all!) of the other

tools in our list. The reader may want to try and design a token passing proto-

col using any of these approaches (pure R.PC, ARGUS or CAMELOT):

although feasible, it isn't easy!
Token passing is just a simple example of the sorts of problem that a directly

distributed system would have to solve. In a setting where token passing is

difficult, the implementation of complex directly distributed systems will surely

be impractical. Some experimental evidence to support this claim exists: many

systems support RPC but few provide mechanisms like the token passing facility
outlined above. One system that does, at least internally, is Digital Equipment's

VAX-Causters system, which uses a locking facility similar to the token mechan-

ism (Kronenberg, Levy, and Strecker (1986)). However, the lock manager

implementation is complex, and few application designers could undertake a
similar effort.

15.4.2 Quorum replb_ion methods

Many database systems manage replicated data using quorum schemes (see

Chapter 13). Quorum mechanisms support replicated data without the added

'baggage' of a full-blown transactional system. Do they offer an appropriate

primitive on which to base a complex directly distributed program?

To answer this question, let us briefly review the mechanism that a quorum

replication facility requires. The basic idea of a quorum replication scheme is
that read and write operations must be performed on enough copies of the
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replicated data object to emure that any pair of writes overlap on at least one

replica and that any read overlaps with the moat recent write.

When a quorum scheme is implemented, update operations require two

phases, while read-only operatiom can be done in one phase. An update is

transmitted during the first phase, and then committed in the second phase if a
quorum of copies were updated and aborted otherwise. The abort is needed to

avoid an uncertain outcome if some processes failed just after doing the update

but before getting a chance to reply. Consequently, recovering processes must
start by determining the status of uncommitted operations that were underway
at the time of the failure.

Now consider the implicadom of this in a fault-tolerant setting. It will be

impossible to avoid running both reads and writes synchronously (meaning that

neither can be performed on any single data item). The problem is that if we
don't want writes to block whenever a failure occurs, the write quorum will

necessarily be smaller than the full set of replicas; for example, in a scheme that

will provide continued availability in the presence of two failures, the write

quorum size must be at least two smaller than the total number of copies. To

ensure overlap with the writes, it follows that the read quorum must be larger
than the number of simultaneous failures that that must be tolerated, three

copies in the above example. Thus, although read operatiom can be done in
one phase, they cannot be done on any single copy of the data item. In light of

this, one sees that although quorum schemes are conceptualiy easy to describe,

they have important drawbacks.

Specifically, a quorum replication mechanism can be expected to run slowly,

because of the need to execute both reads and updates synchronously (that is,

replies arc needed fi'om remote copies of data items before these operadom can

be completed). And, a fairly complex recovery mechanism must be imple-
mented to support the muldphase commit done on writes and to handle the

recovery of a procem that had a copy of a data item that was being updated at
the time of a failure. If every approach to these problems were equally synchro-

nous, this objection would not be an important one. However, as we will see

below, there are asynchronous alternatives of comparable complexity, and would

normally outperform a fault-tolerant quorum scheme.

Could quorum methods be used to solve the general set of direct distribution

tooh enumerated earlier? Consider the token passing problem. It would cer-

tainly be possible to use quorum methods to update variables identifying the
current token holder and request queue. However, one would be faced with the

issue of maintaining a list of processes holding copies of this information. The

problem here is that database systems are fairly static; a copy of a replicated

database may be online or ofl_ine, but the set of copies doesn't change very

often. Thus, databases usually define quorum sizes statically, taking both failed

and operational replicas into account. In contrast, the problem under considera-

tion requires that the set of procemes involved change dynamically, with new

processes joining in an unpredictable manner and old members dropping out

permanently. We know of no quorum-based scheme that explicitly supports this
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sort of dynamicism, although some of the extended quorum algorithms

developed by Herlihy (1986b) may be capable of solving this problem. Thus, a

fault-tolerant quorum-based token passing algorithm is likely to be costly both in

terms of code required and the performance that it can achieve, and may prove
restrictive with regard to the degree of dynamic behaviour it can accommodate.

Just as transacdom have begun to appear in higher-level systems and
languages, so have quorum replication techniques. In particular, the AVALON

language, which was built on top of CAMELOT, provides mechanisms for

maintaining quonun-based replicated objects in which quorum sizes change
dynamically (Herlihy (1986b)). The approach works well in settings with fre-
quent communication partitioning, site failures and recoveries -- in contrast to

some of the methods that will be discussed below, which perform better than

quorum schemes when problems of these sorts do not arise, but may block dur-
lug communication partitioning and impose a high overhead when site failures
and recoveries occur.

15.4.3 The V system

Until now, the systems discussed in this chapter have been those that do not

really support direct interactiom between procemes. V is an RPC.bued system
that simultaneously places a strong emphasis on performance and on providing

system support for forming process groups and broadcasting requesta (Cheriton
and Zwacnepoel (1985)). By virtue of supporting process groups, V is able to

address many of the problems in our toolkit. However, V was not designed with

fault-tolerance or distributed consistency as a primary consideration, and pro-
vides little support for the application designer for whom these are major issues.

For example, recall the problem of how a group broadcast mechanism should

work when group membership is changing or processes fail. Although V makes

a 'best effort' to deliver messages to all members of a procen group, V makes no

absolute guarantees that all receive a given broadcast, or that messages are
received in some consistent order relative to a membership change.

A V-style broadcast is well suited to some types of directly distributed applica-

tiom. If an application is broadcasting to a network resource manager, for
example, to find the mailbox for a user, it may not matter very much if some

procea_ fail to recdve the request. It is easy to program around the uncer-

tainty, emuring that behaviour is correct in all but the most improbable

scenarios. Thus, when broadcasting mailbox location updates, it may not matter

if some processors miss occasional updates (Lampson (1986)). In this example,

and in others with a similar character, the V broadcast primitive is suitable for
implementing replication.

Our token passing problem is no easier to solve in V than in a standard RI_

setting. Similarly, replicated data with a 1-copy behaviour cormraint would be

hard to implement on top of the standard V broadcast: if an update fails to get

through, or two updates arrive in different orders at different group members,

the copies could end up with inconsistent values. To solve either problem, a
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non-trivialmechanism would be needed at the applicationlevel,and, as noted

earlier,few applicationdesignerswould be capable of undertaking such a com-

plex and uncertaindevelopment effort.

15.4.4 The Linda kesnel

One problem with using shared memory in a directly distributed application is

that the processes interacting through the memory are also faced with a complex

synchronization problem. At Yale, Carriero and Gelernter have developed a set

of language extemions that solves both of these problems simultaneously (Carri-

ero and Gelertner (1986)). This enables them to use shared memory as a tool

for building directly distributed software. Before discussing the system in any

detail, it should be noted that the present implementations of Linch are designed

for a different environment than the one that interests us here: parallel proces-
sors, where failure is lens of an issue and concurrent execution is paramount. Of

course, this does not rule out a l.inda implementation for loosely coupled distri-

buted systems subject to failure, but substantial re-engineering would be needed.

What makes Linda interesting is that it permits simple solutions to some of the

toolkit problems that the mechanisms reviewed above are unable to handle, and

this makes the system particularly interesting in the light of the objectives in this

chapter.

The Linda approach is based on the idea of a shared collection of tuples. The
operations provided are out (add a tuple to the space), m (read and remove a

tuple) and read (read a tuple without deleting it). Tuples can be extracted by

specifying the value, of some fields and just the data types for others. In this
case Linda performs a pattern-matching operation that finds some tuple match-

ing the specified fields and returns the values contained in the remaining fields.

The caller can specify whether or not an m operation should block if it cannot

be immediately satisfied. The basic idea of Linda is to allow a set of processes to

execute tuple-space operations concurrently, but to perform those operatiom in a

logically (but not necemarily physically) serialized fashion.

There have been several implementadom for Linda. Among these is one in
which m and out are broadcast using an ordered protocol and executed in paral-

lel by all processes, one in which out is performed locally, and m broadcast to all

processes, and one that operates by dividing tuple space among the various

proceates in such a way that one can map a tuple to its handler using a simple

hash tiara:don. That procem then resolves the m or out requests presented to it in
the order they arrive. Thus, although the tuple space is conceptually shared, it

is not necessarily physically replicated, and different data objects may be

managed by different processes.
One could easily build a solution to the token-passing problem in Linda. The

token would be represented by a tuple, and the procemm would use the blocking

version of m to request it and out to pare it. The solution would be subject to
some limitadom, but here one needs to distinguish intrinsic issues from come-

quences of the engineering decisions made as part of the Linda implementation.



332
K.P. BIRMAN AND T. A. J(36EPH

New8atch(hoLe List)

(

/* Load wonkspace _Jth hole descriptions */
for(each hole in hole List)

m

out("to_do", hole.x, hoLe.y, ...);

/* Wait for all to be processed */

foe(each hole |n hole_list)
{

/* Jn _JLL block until outcome Js known */

Jn("done", hole.x, hole.y, Jnt status);

if(status Im RUST CHECK)

pnJnt("Must c_eck hole at ...%', hole.x, hole.y);
)

)

F'tllure 15.1 Generating work for a cell controller in the C-IAnda

For example, the dynamic group membership aspect of the problem could be
solved easily in a version of IAnda that performs out locally and broadcasts bl

operations, but would be much more difficult in a version of Linda that requires

that the set of processes managing the tuple space be static. Another problem
that arises is that none of the present implementations of Linda can tolerate

failures. If the process that manages some fragment of tuple space process

crashes, that part of tuple space is simply lost. Although one could solve this by
replicating the tuple space, to do so would just push the issues that were

identified above into the Linda implementation, since IAnda itself would now

need to implement a correct and fault-tolerant replication mechanism. Thus,

the Linda primitives somehow embody a property that makes it easy to solve

problems like the token passing one. However, solutiom to problems like the
replicated data problem are still needed before we can apply this successful

aspect of the Linda system in the general setting of our toolkit.

Linch has been applied successfully in several settings. In the area of parallel

simulation (that is, simulations run on distributed or parallel systems), _ has

been used primarily to build parallel solutions to a range of problerm. Nearly
fuji utilization of the processors is often cited.

For example, Figure 15.1 and Figure 15.2 illustrate a skeletal solution to the

drilling problem introduce at the start of this chapter, using Linda tuples to
describe the work to be done and the outcome. Each hole to be drilled is

described by a 'pending work' tuple. A drill control processor selects a tuple on

which to work, drilh the hole, and then omputs a tuple describing the outcome.
Because IAnda was not designed to addresa fault-tolezance, the above code

lacks the mecha_ needed to detect failures and generate a list of holes that a

technician should recheck. That is, there is no good way to generate a
MUST CHECK tuple on behalf of a crashed control process in present veniom of

Linda. Likewise, it is hard to see how one could handle dynamic scheduling
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/* A typical drill controller */

DrillControl()

{
forever

{

in("to do', int x, int y, ...);

/* Posit_on the drill, then make the hole */

PositlonDrill(x, y);

outcome - DrilIHole(HoleSpecs);

/* Record outcome *1

out("done', x/ y, outcome);

Figure 15.2 A control procem for a single drill

using Linda's tuple-matching mechanism. The problem here is that the

language lacks a way for the user to provide a tuple selection criteria. Thus, to

pick the optimal hole subject to some user-specified metric, such as the hole that

minimizes the total expected drilling time, it would seem necemary to examine

the full set of tuples. (Of course, there may well exist a clever encoding of the

problem into a tuple-space data structure that would efficiently solve this.) One
could also certainly imagine extensiom of the language in which this problem
could be addressed.

IAnda is intriguing because it points to a pomible structure for the kind of

problems we are interested in. The emential observation is that when aU
processes in a system cooperate through a mechanism that orders elementary

operatiom that might interfere with one another, distributed consistency is

surprising easy to achieve. As shown below, by sul_tituting ordered reliable

broadcasts for ordered tuple-space operatiom, one can implement fault-tolerant
solutions to moat of the imues that the toolkit raises. Just as the partial solution

to the drilling problem shown above arises naturally out of the structure that
Linda suggests, fault-tolerant solutions to the other problems in the toolkit result

from this extended approach.

15.4.5 The HAS system

At IBM, the HAS project explored a cloaely related approach. HAS supports

A-wmmoa storage, which is much like the Linda tuple space but defined in terma

of abstract operatiom on a shared memory. As in the case of the real-time

broadcast protocol discussed in Chapter 14, updates are completed within a

period of time bracketed by upper and lower hounds expremed in terms of a
computed parameter, A. That is, no update can be completed in/ess than a cer-

tain minimum time, but neither will any be delayed for longer than a specified
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maximum time. In addition to the shared memory abstraction. HAS provides a

processor grouping mechanism on top of this layer of protocols, like the one sug-

gested for individual processes but at a coarser granularity (Crisdan et aL (1986);
Cristian (1988)).

In contrast to Linda, HAS was designed for use in loosely coupled processors
communicating on high speed point-to-point channels as well as broadcast

media such as token rings, and subject to a variety of failure modes. Moreover,

the HAS methodology provides tolerance to a range of failures including Byzan-

tine failure modes in which processes can behave in arbitrary malicious ways
and experience bizarre clock failures. However, any protocol that would actu-

ally tolerate worst case behaviour for a wide range of possible failure modes

would perform very poorly, translating to a very long minimum delay when

updating the shared memory. To arrive at a practical facility, the group
exploited the observed failure characteristics of this environment, which permit-

ted them to make a trade off between the types of failures that their implemen-
tation actually tolerates and its performance. For a realistic scenario, with rela-

tively high speed processors on a fast token ring, this approach resulted in a

real-time atomic delivery protocols in which the minimum delay to update the
shared memory was fairly small -- of the order of 100ms.

With current technology, the HAS approach would not scale well to very

large networks because the real-time performance characteristics of such a sys-
tem would be very poor in comparison to the small, closely coupled machines

used to achieve the sort of performance cited above. An open question relates to

how changes in communication hardware and increased processor speeds could
impact on the way the system scales.

15.4.6 The ISIS system

Like Linda and HAS, the ISIS system adopts an approach based on synchro-

nous execution, whereby every process sees the same events in the same order

(Birman and Joseph (1987a)). However, ISIS simultaneously seeks to provide

fault-tolerance, effective replication mechanisms, and good performance in larger
local area networks. The system starts with the observation that synchronous

execution models offer strong advantages. Their primary disadvantage is one of

cost: without hardware support, a distributed lock-step execution performs

poorly. Even with hardware support, a lock-step style of computation does not
scale.

To address this, ISIS provides an dhtmm of synchronous execution, in much

the same sense that wamactional serializability provides the illusion of a sequen-

tial transaction execution. Whenever possible, ISIS relaxes synchronization in
order to reduce the degree to which processes can delay one another and to

better exploit the parallelism of a distributed environment. We use the term m-

tua/synr.hnmy to refer to this approach, because the system appears to be synchro-

nous but is actually fairly asynchronous. For example, processes are permitted to

initiate an operation asynchronously, by broadcasting a request without pausing
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to wait fora reply,t When thisisdone, ISIS behaves as ifsuch messages were

deliveredimmediately,preventing any action that occurs 'after'thc broadcast

was sent from secinga system statefrom 'before'thc broadcastwas sent. Simi-

larly,ISIS deliversbroadcasts with common desfnatiom in the same order

everywhere -- except when itispc_iblc to inferthat the applicationdoes not

such strongordering. In such cases,ISIS can be toldtorelaxthe delivery

orderingrules,which permitsitto use a cheaper broadcastprotocol.

ISIS differs from Linda and HAS in that it provides a message-oriented

(rather than a shared-memory interface). The basic ISIS facilities include tooh

for creating and managing process groups, group broadcast, failure detection

and recovery, distributed execution and synchronization, etc. A Linda-style

replicated tuple space is easy to implement in ISIS, as is l-copy replicated data.

Moreover, the implementations can readily bc customized to address special

requirements of the application program, such as the selection of the optimal
next hole for a controller to drill. These mechanisms will be examined in more

detail below, and then an example illustrating how ISIS could be used to solve

the drill control problem will be discussed.

15.5 An execution model for virtual synchrony

One desirable feature of systems like ARGUS, CAMELOT, Linda, HAS and

ISIS is that one can write down a model describing the execution environment

they provide. In the case of ARGUS or CAMELOT, the model is baaed on

nested tranzactiom, and the lowest-level elements are data items and operations

upon them. Modeh for the latter systems are similar but oriented towards the
representation of synchronous executiom. Before looking at virtually synchro-

nora algorithms for the tool, enumerated earlier, it will be helpful to start by

defining such a model and giving virtual synchrony a more precise meaning.

The elements of the execution model we will be working with are processes,

procem groups, and broadcast events. Broadcast events include more than

group communication. Point-to-point memages are treated as a broadcast to a
singleton procem-group. Failures are treated as a kind of broadcast too: a last

message from the dying proccm informing any interested parties of its demise.
Data items arc not explicitly represented, although one can superimpose a

t Note the difference between this and an _ where such • pauae is built in even if no reply is
For eaamplc, on the SUN 3 venio_ _i"ISIS • program that imum an uynchronom brmai-

c._ to 5 destinaticm would reaume executing aliter • delay laging for • uratll fraction 0i"a mil-
liwm_ The nanote mema@edeliverim occur within 5-10 milliaeoon_. With RPC, which has • 10
millimamd round-trip time under UNIX on a SUN 3, the caller wmdd be delayed by 50 mil-

plm any _ lulmc.iatedwith the group acldrm_ pro_g_l. DefiveaV would cake I. king
u 45 milliaeccmdsbetween the ,urn c_ tbe broadcast and the arrival _ the laat meuage. On t3,_enu
with faster procemorsand cheaperRPC _ thecam _ might _..ale, but the tame argumcm
could gill be made. The advantage is that when ISIS tends ach-mwledgemem memagea,it overlapa
them with concurrent ,',tecution in the w..nder,winning improved performance.
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higher level on top of this basic model in which operadons and the values of

data become explicit.

15.5.1 Modelling a synchronous execution

One way to understand a model is as a formalism for writing down what an
'external observer' might see when watching the _em execute from somewhere

outside of it. The external oheerver provides a notion of global time to relate the

actions taken by distinct processm. One defines an execution to be synchronous if
the external observer can confirm that whenever two processes observe the same

event, they do so at the same instant in time. This is illustrated in Figure 15.3,

where time advances from top to bottom.

Pz Pt $1

| ......................

........ c....... _ .....

$2 Ss

scrim - (s, s,, s_)

• P_--. _mdr.e

St "-_ PI

PL "" St

•. S_--,P_+Service

_Sl fa_

P2 -'_Service

Fillmm 15.3 A symhronout execution. A pair of client pro,
identified at Pt and P2 interact with a prtr..em group containing

three terver procemet. Execution advttxcet from top to bottom in a
kw.k-ttep manner. Several rnemage exchanger and a failure are
shown.

In a synchrmmm model it is easy to specify the meaning of an aUcn_ ('all or

nothing') broadcast to a proem group. At the time at which a broadcast is
delivered, it must be delivered to all current members of the group. Thus the

of deatinati_om is determined by the event sequence (processes joining or leaving

the group) that occurred prior to that time. This does not tell us how to imple-
ment such a broadcast, but it does give a rule for deciding whether a broadcast

is a atomic or not. We will be making use of this rule below.

Of the systems discussed above, Linda comes closest to providing a synchro-

nous execution. However, a genuinely synchronous execution would be



15 E.X.PLOITINO REPLICATION IN DISTRIBUTED SYSTEMS 337

P2 Pl Sj Sz S_

Service - (S_, S2, S3)

P, _ Service

SI _ ,Pt

PI _ SI

Sl _ Pl + Service
• S_ fail=

_)P= _ Sea-vice

Figure 15.4 A looeely syneh_nota execution

impractical to implement in a local area networking environment. To do so, all
the processes would need access to a common clock and to execute at fixed

speeds, neither of which is normally possible.

15.5.2 Mode.Ring a loosely synchronous execution

An execution is said to be/0ose_ synchronous if all processes observe events in the

s_ or&r. Figure 15.4 illustrates such an execution. An external observer who
notes the time at which events are executed may see the same event processed at

different times by different processes. However, the events will stillbe executed
in the same order as they would have been in a truly synchronous execution.

Hence, if the system is not a real-time one (and this is something we auumed at

the ouag't), procemea that behaved correctly in a truly syrlchronous setting
should still behave correctly in a loosely synchronous one (Neiger and Toueg

(1987)).
More formally, for every loosely synchronous execution E, there exits an

equaaz/cnltruly synchronous execution E'. The two executions are equivalent in

the following sense. Let Ep be the sequence of events observed by process p in
an execution E. Then E'p = Ep for all p, that is, every process observes the

same sequence of events in E and E'. Unless a procesa has access to a real-time
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clock, it cannot distinguish between E and E'. Figure 15.4 is indistinguishable
from Figure 15.3 by this definition.

Any synchronous system is a/so lomely synchronous. Thus, Linda and HAS

arc both loosely synchronous systems; the global event ordering being imposed
by hardware in the former case, and by a software protocol in the latter.

15.5.3 Modelling a virtually synchronous execution

A _tua@ sync_ron_ execution is related to a loosely sy_hronous one in much

the same way that a s_/a/kab/¢ cx_ution is related to a serial one. The charac-
teristic of a virtually synchronous system is that although an external observer

may see cases in which events occur in different orders at different procesaes, the

p_ themselves arc unable to detect this. For example, Figure 15.5 is a

copy of Figure 15.4 with the delivery of event a delayed to occur after b at one
destination. This execution would be called virtually synchronous if, after both a

and b have terminated, no process in the system can contradict a claim that a

executed first everywhere. Evidence cd"the order in which operations took place

could be explicit in the value of some variable, or it could be reflected in the

response to one of the requests or the actions that a process took after receiving

some request.

Pz Pt S_ $2 $3

S_ fails

Figure 15.5 A virtually synchronous execution



One problem with the sort of relaxation of order seen here is that it looks very

narrow in applicability. For it to be of interest, one needs to be able to identify

relaxatiom that can be applied in a systematic manner and actually correspond

to protocoh of different cost. In particular, it is highly advantageous to substi-

tute a one-phase broadcast protocol for a two-phase protocol, and this is the sort
of relaxation of ordering that we are after here. The idea in building a virtually

synchronous system is to look for such cases and to exploit them. This was also

our hidden motive in introducing a list of tools. Whereas it is unlikely that one

could systematically find ways to relax order in arbitrary applications, it is

entirely reasonable to do so in applications that are uniformly structured and

interact primarily through standard 'toolkit' interfaces. In such a setting, one
could optimize the tools as a way of optimizing all the application software that

later gets built on them.

Recalling the definition of loose synchrony in the previous section, an execu-

tion E is _rtua/_ syachr0neus if there exists some truly synchronous execution E'

equivalent to E. However, we broaden our notion of equivalence between exe-

cutiom by requiring only that E'# _ Ep, for all p. Here '_' means that two
event sequences are ind/stmgu/_hab/,, but not necessarily identical. The determi-

nation of which event sequences are distinguishable depends on the semantics of

the individual events in a particular application. A formal definition of this sort

of equivalence and a theory of virtual synchrony have been developed by
Schmuck (1988).

15.6 Comparing virtual synchrony with oth_ models

15.6.1 Tramactional serializalaility

Is our model really any different than a transactional one? We argue that vir-
tual synchrony is a substantial generalization of transactional serializability.

Clearly, if a system is serializable, it ia virtually synchronous. On the other
hand, a virtually synchronous execution need not be serializable. Fi_t, there is

nothing like a transaaion in a virtually synchronous system. Corfftder a pair of
processes, executing concurrently, that interchange a series of messages leading

to a dependency of each on the state of the other. In a transactional setting, this

could only occur if each interaction was a separate top-level transaction -- a

series of atomic actions with no subsuming tramactiom at all. However, trans-

actional work has generally not comidered this case directly, and it is normally
not even stated that the serialization order for such top-level actiom should be

the order in which they were initiated. For many concurrency control schemes,

such as two.phase locking, there is no a priori reason that this would be the

case: a single transaction might asynchronously initiate two top-level tram-
actions, first Ti and then 7'2, which would be serialized in the order T2 fol-

lowed by Tl.

t For example, T_ might block waiting for a lock and th_ update variable x, while T2 acquires ira
locksand manages toupdatexbeforeT,.
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Virtual synchrony imposes an explicit correctness constraint on sequences of

interactions like this, namely that unless the order is irrelevant, the events must

be observed in the order they were initiated, even if they were initiated asyn-

chronously, and even if order arises through a very indirect dependency of one
action on another. Moreover, virtual synchrony talks about process groups and

distributed events (broadcasts, failures, group membership changes, and so

forth). None of these issues arise in a conventional transactional setting. In light

of their importance within the directly distributed tools we listed earlier, and the

apparent difficulty of layering them on top of transactions, these are sign/ficant
differences.

Transactions and virtual synchrony both depend strongly on the semantics of

operations. In the case of transactions, this was first observed when an attempt

was made to extend transactional serializability to cover abstract data
(Schwarz and Spector (1984)). Where.as it is easy to talk about concurrermy con-

trol and serializability for tramactions that read and write (pcmibly replicated)
data items, it is much harder to obtain good solutions to these problems for tram-

actions on abstract data types. In the case of virtual synchrony, the problem
arises became the model lacks data items or any other fixed referent with well-

known semantics. One can only decide if an execution is virtually synchronous if

one knows a great deal about how the system executes. This is an advantage in

that the definition is considerably more powerful than any data-oriented one.

There axe many virtually synchronous systems that could not be interpreted as

synchronous by somehow making the model knowledgeable about data. On the
ocher hand, the presence of semantic knowledge makes it hard to talk about

correct or efficient system behaviour in general terms, without knowing what the
system is doing. As we will see shortly, one can only do this through a detailed

analysis of those algorithms on which a particular system relies.

15.6.2 Virtual synchrony in qum_m-based schemes

Earlier, some examples were given of how a quorum scheme might be used to
obtain consistent behaviour in a relatively unstructured setting. Such an

approach can be under_od as a form of virtual synchrony. The basic charac-

teristic of a quorum scheme is ira qamam int_seaion rdate, which specifies how

large the quorurns for each type of operation must be (Hcrlihy (1986b)). If two

operations potentially conflict -- that is, if the outcome c£ one could be
influenced by the outcome of the other -- then their quorums will intersect at

orm or more proceaes. Thus one can build a partial order on operations, such
that all conflicting operations are totaUy ordered relative to one anotimr, while

non-conflicting operations are unordered. Since non-conflicting operatiom

always commute, the executions of a quorum-based system are indistinguishable

from any extension of this order into a total one. Such a total order can be
understood as a description of a synchronous execution that would have le_ the

system in the same state as it was in after the quorum execution. Thus, a

quorum execution is virtually synchronous.
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15.7 System support for virtual synchrony

15.7.1 The ISIS virtually synchronous toolkit

Let us now return to the ISIS system and look more caref_ly at some of the vir-

tually synchronous algorithms on which it is based.

15.7.2 Groups and group conununication

The lowest level of ISIS provides process groups and three broadcast primitives

for group communication, called _T, ABC, AST and GBCAST. The prim-
itives were discussed in Chapter 14, and their integration into a common frame-

work supporting group addressing is covered elsewhere (Birman and Joseph

(1987b)). We therefore focus on their joint behaviour while omitting implemen-
tation details.

In ISIS, a ,_m_ss group is an association between a group address and some set
of mem__,a. Membership in a process group has low overhead, so it is assumed

that processes join and leave groups casually and that one process may be a
member of several groups.

A oiew of a process group is a list of its members, ordered by the amount of time

they have belonged to the group. ISIS includes tooh for determining the current

view of a process group and for being notified of each view change that occurs.

All members see the same sequence of views and changes.

The destination of a broadcast in ISIS is specified as a list of groups. Group

membership changes are synchronized with communication, so that a given

broadcast will be delivered to the members of a group in the same membership
view.

Recall that a broadcast is _ora/c if it is delivered to a/l members of each desti-

nation group. Here, 'all' refers to all the group members listed in the process
group view in which delivery takes place, which may not be the same as the

membership when the broadcast was initiated.t A _'rtud_ atonu_ delivery is one

in which all group members that stay operational receive the memage in the same

view. The ISIS broadcast primitives are all virtually atomic. Thus, the reci-

pient of an ISIS broadcast can look at the 'current' group membership (in a vir-
tually synchronous seine) and act on the assumption that all of the listed

processes a/so received the message. It may subsequently see some of them fail,

perhaps without having acted on the message.

CBCAST, ABC, AST and GBCAST differ in their delivery ordering properties.

Before we review these differences, recall the definition of the potential causality

relation on events, --, introduced in Chapter 14: e --* e' means that there may

have been a flow of information from event e to event r' along a chain of local

actions linked by memage pasting.

t In ISIS, it will be the same or a sublet o£ the _ membership.
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Let bcast(a) denote the initiation of broadcast a and ddi_r(a) the delivery d
some a to some destination. All three types of broadcast ensure that if bca_(a) -_

beast(b) for broadcasts a and b (below, a _ b), then deliver(a) will precede
deliver(b) at any common destinations. In fact, they satisfy an even stronger pro-

perry, namely that if a --* b then, even if a and b have no common destinations,

b will be delivered only if a can be delivered too. This emures that if some sub-
sequent broadcast c is done, with b --_ c, and a and ¢ have common destinatiom,

the system will be able to respect its delivery order comtraints. The ISIS

delivery ordering comtraint can be thought of as a FIFO rule based not on the
order in which individual processes u-ammitted broadcasts, but on the order in

which threads of control did so. Here, a thread of control is any path along
which execution may have proceeded.

CBCa_ST satisfies exactly the above delivery comtraint. If a and b are con-

current, then C3___,AST might deliver a and b in differem orders. _T pro-
rides a delivery order that extends --_ so that if a and b are two concurrent

ABCASTs, a delivery order will be picked and respected at all shared destina-

tions. However, _T and _T are unordered with respect to each

other. G_,AST, in contrast, provides totally ordered delivery with respect to all
sorts of broadcasts. Thus, if g is a GBCAST and a is any sort of broadcast then

g and a will be delivered in a fixed relative order to all shared destinatiom.

A system that uses only _ to trammit broadcasts is loosely synchro-

nous. For this reason, ISIS uses _T as its default protocol unless told oth-

erwise by the programmer. However, A_T is cmtly. Like the quorum pro-
tocoh, it sometimes delays message deliveries in a way that would be noticeable

to the sender. CIBCAST is much cheaper, especially when invok_'d asynchro-
nomly, f This leads to the question of just when synchronization can be relaxed

by changing an ABCAST to a CBCAST in a broadcast-based algorithm.

15.7.3 When can _/nchronization be relaxed?

Let us examine the degree to which some specific algorithms depend on the ord-

exing characteristics of the broadcasts used for mcmage trammi_'on. We begin
with some examples drawn from a tingle process group with fixed membership:

• A replicated tuple space, supporting the Linda in, out and read operations

but using replicated data to achieve fault-tolerance.

• A shared token, supporting operations to request it, to pass it, and to deter-
mine the current holder.

"_ The impl_tation ff ISIS ii more oomph tha_ the earlier dizuaia_ ff _ paxoa_ made it

appear. For rr.mom o(brevity, the amoci_cd issues arc not discuma:l here. However, the reader

be aware that tO rnakc e._cctive _ o£ protocols sh_?.han t_ • _lmtial ¢_necring ha,,'cHlc_'R ia

needed. This ranges from the requirement for a syltc:rn archit.ccAurc that impm_ low ovcrhcad to

heuristics for scaling the protocoh to run in large networka and to avo.d thrashing when omamunicadma

patterns overtoad the most o0atly _poets oi"the proto¢o t- (Bisman, Joeeph, and $¢hrnuck (1989)).
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Replicated data. There are two cases: a variable that can be updated and

accessed at will, and a variable that can only be accessed by the holder of a

token (lock) on it. We look only at the second case, as the first one is essen-
tially the same as for the Linda tupLe space.

15.7.4 Shared mple space

Say that we wish to replicate a Linda tuple space (refinements such as fragment-

ing the space using a hashing rule could be superimposed on a solution to this

basic problem). In ISIS, this would be done by having the processes that will

maintain replicas form a process group. What kind of ordering would be needed

here? Except for the read operation, which can be done locally by any process
managing a replica, all operatiom change the tuple space. Gonsequently, they

all potentially conflict with one another, suggesting that ABCAST is the

appropriate protocol.

Notice that it is possible to relax the relative ordering when two operations

that affect independent tuples. Could we take advantage of this to replace

ABCAST with a cheaper protocol? Such a protocol would look at the type and
arguments of each operation. It would chose a global order for operatiom that

actually conflict with one another, while permitting non-conflicting operations to
execute in arbitrary orders. At first glance, it may sound like one could design a

hybrid protocol that would run in two phases in the case of a conflict but deliver

in one phase if no conflict were found. However, on closer examination one sees

that if the posa_bility of conflict exists, a two phase protocol is always needed.

The problem is that when an operation 0 arrives at a replica r, it is not sufficient

to know that no conflicting operatiom are underway at r; one needs to know

that none are underway at any replica. This precludes delivery during the first

phase. But, if two phases will be needed, there is no benefit to be gained by
including a teat for conflict. It seems more reasonable to just use a normal
ABC.AST.

15.7.5 Shared token

The shared token is intereating because it admits a variety of possible implemen-

tations. The most synchronous implementation is the easiest to understand. In

this algorithm, both request and pass operations are transmitted using a globally

ordered group broadcast. Members maintain a queue of pending requests. A

token holder wishing to do a pass operation first waits until at least one request
is pending, then broadcasts the pass operation. On receiving such a broadcast,

all procesaes mark the request at the head of the queue as having been granted.

What if we wanted to use a cheaper broadcast primitive? Since the algorithm

depends on a totally ordered request queue, we cannot use a cheaper protocol
for sending requests without major algorithmic changes. On the other hand, it

might be poesible to use a leas ordered protocol for trammitting pass operationa.

This, however, raises a subtle mue. It may be potable for a request message to
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reach one group member much earlier (in real time) than some other. If we

change the broadcast primitive, such a sequence could result in a race, where a

subsequent pass operation arrives at a slow process before the request from which
it will be satisfied (Figure 15.6).

P_ P2 P3 P4

PA&q

P L holds the token initially

Pz requeststhe token

Pi panes tilemkm

Has P4 _,n t_wa,q_st._,t._

Figure 15.6 A race could develop when using a weakly ordered
broadcast

Likewise, a process about to pass the token could decide to satisfy a request that
has already been granted, for example, if it were to receive the token before

receiving the pass message corresponding to that earlier request. Clearly, this
would lead to error.

Fortunately, although the situatiom described above could arise when using a

totally unordered protocol, or one that is FIFO on a point-to-point basis, it can-

not occur with a C_,BCAST protocol. To illustrate this, notice that a process can-
not try to pass the token unless it has fast requested it and then received it from

some other bolder. Let Ri denote the ?th token request to be satisfied and Pi the
pass done by the process that isaued R. This remits in Ri-, Pi and

Vj < i: Pj ..-# P_. Thin, Vj < i: Rj --_ Pi. In other words, when
delivers a particular past message, the destination will always have received the
prior request operations and _ tcrsa, eliminating the source of our concern.

This reasoning inspires a further refinement. Why not transmit request opera-

flora using CBCAST as well? The preceding analysis shows that any process

receiving a past will have received the requtst to which that pass corresponds.
Thus, the only problem this change would introduce would be due to the lois

a global request ordering: different procenes could now receive requests in

different orders. This meam that it would no longer be pomible for each process
to determine, in parallel with the others, who is the new holder _ the token:

they would have no ba_ for making comistent decisiom. On the other hand,

the decision could be made by the process about to send a pass memage. If there
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is no pending request, that process will have to defer its pass until a request turns

up. Given a pass message that indicates the identity of the new holder, all

processes can find and remove the corresponding request from their ,-t of pend-

ing requests, where it wiU necessarily be found.

Figure 15.7 illustrates this behaviour schematically. The darker lines show the

path along with the token is passed, which is precisely the equivalent of the -*
relation used in the above argument.

P_ Pz P_ P4

IL-

..... :_ tokma rts:lU_

token pass

__ path token folLow*

Figure 15.7 A virtually synchronous token-pasaing algorithm

To summarize, a token-passing problem admits a variety of correct solutiom.

The cheapest of these, from the point of view of message trammission, is the

third. It depends only on the ordered delivery of messages that relate to one
another u_Aer --_. A slight price is paid when a pass operation is carried out

and there is no pending request: the broadcast corresponding to the pa_ must be

delayed, and this will have the effect of introducing a delay before the request can
be satisfied when it is finally isaued. In the ISIS system, the benefits of using an

asynchronous one-phase protocol to implement the broadcast far outweigh any

delay incurred in this manner.
Token passing is an especially interesting problem because it captures the

essential behaviour of any system with a tingle locus of control that moves about

the system, but remains unique. Many algorithms and applications have such a

structure. Thus, if the token passing problem can be solved efficiently, there is

some hope for solving a much larger clam of problems efficiently as well. Notice

in particular how the final optimization replaced a global ordering decision (in
the _ with a local one in the sender, and then took advantage of the

fact that the sender holds mutual exclusion to propagate the decision using an

inexpensive protocol. Viewed in this manner, one sees that the original algo-

rithm was discarding ordering information and then paying a price to regenerate

it! The underlying lemon is clear: in comtructing efficient order-baaed
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algorithms, one must make every effort to preserve and exploit any sources of
distributed order available to the application.

15.7.6 Replicated data with mutual excitation

The usual reason for implementing tokens i_ to obtain mutual exclusion on a

shared resource or a replicated data item. In an unconstrained setting, like the

Linda tupte space, it has been shown that correct behaviour may require the use

of a synchronous broadcast. What if updates are only done by a process that

holds mutual exclusion on the object being updated, in the form of a token for
it?

If W,k denotes the ]¢xh replicated write done by the /th process to hold the

token, we will always have R, --, W ° -, .. • W_ --, Pi. Now, since P, denotes

the passing of the token to the process that will next obtain it, it follows that if a

process holds a token, then all um'u operations done by prior holders precede the
pass operation by which the token was obtained. Thus, if CBCAST is used to

transmit umu operadom, any procem holding the token will also see the moat

current values of all data guarded by the token.

It follows that l-copy behaviour can be obtained for a replicated variable

using a token-pasting and updadng scheme implemented endrely with a_/nchro-
nous one-phase broadcasts. Any process holding the token will 'know' it also

pcmess_ an up-to-date state. This kind of knowledge is formalized in Taylor

and Panangaden (1988). Moreover, execution can be done by reading and writ-

ing the local copies of replicated variables without delay -- just as for a non-

replicated variable -- and leaving the corresponding broadcasts to complete in
the background.

Figure 15.8 illum'ates replicated update using token passing in this manner.

ALl the updates occur along the dark lines that highlight the path along which

the token travels, which is the --¢ relation used in the above argument.

Although the system hat the freedom to delay updates or deliver them in

batches, it can never deliver them out of order or pat a token to a process that
has not yet received some pending updates. The algorithm is thus executed as if
updates occurred imtantaneously.

What about an application that uses multiple data itema, and multiple locku?
The algorithm described above can yield very complex executions in such a set-

ting, became of delayed delivery of update messages and deliveries that can

occur in different ordert at different sites. Nonetheless, such a system always hat

at least one synchronous global execution that would have yielded the same out-

come. To see this, olalerve that -, for this system is a set of paths like the one

seen in Figure 15.8, each consisting of a sequence of wnu and pass operations.
These paths crtm when a token is pasted to some process # that su/mequently

receives a second token (Figure 15.9). Such a situation introduces edges that

relate operations in the former path to operadom in the latter. Similarly, if a

process reads a data item, all the subsequent actions it takes will be ordered after

all the previous updates to that data item. Although it may be hard to
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-Pl P P

update I

update 2

token p_d

update 3

token pu_d

update 4

token pained

update 4

Figure 15.8 A virtually synchronom replicated update algorithm

visualize, the resulting -o relation is an acyclic partial order. It can therefore be

extended into at least one total order, and in general many such orders, each of

which describes a synchronous global execution that would yield the same values

in all the variables as what the processors actually saw.

Thus, although the update algorithm is completely asynchronous and no pro-

cem ever delays except while waiting for a token request to be granted, the exe-
cution is indistinguishable from a completely synchronous one such as would

result from using a quorum write (Herlihy (1986b)) for each update. The per-
formance of our algorithm is much better than that of a synchronous one,

became a synchronous update involves sending messages and then waiting for

responses, whereas an asynchronous update sends messages without stopping to
wait for replies. No process is ever delayed in the execution illustrated by Fig-

ure 15.9, except when waiting for a token to be passed to it.

A similar analysis can be undertaken for replicated data with local read- and

replicated write-locks, although we will not do this here. The existence of local

read-locks implies that write-locks must be acquired synchronously, with each
process granting the lock baaed on its local state, and the write-lock considered

to be held only when all procemes have granted it. This leads to an algorithm

in which read-locks are acquired locally, write-locks are acquired using a syn-

chronous group broadcast, and updates and lock releases are done using asyn-

chronous broadcasts. In a refinement, the breaking of read-locks al_er failures

can be prevented by asynchronously broadcasting information about pending
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update 1.5
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F'qpare15.9 Replicated updates with multiple tokens

read-locks in such a way that any updates that depend on a read lock are

related to the read-lock broadcast under ---_. This method was first propaed by

Joseph and Birman (1986).

15.7.7 Dealing with failures

The analysis of the preceding section overlooks failures and other dynamic group

membership changes. In many applications one wishes to deal with such events
explicitly, for example by granting the token to the next pending request in the

event that the current holder fails. Recall that group membership changes must

be toeally ordered with respect to other events in order to ensure the virtual

atomicity of broadcast delivery. Since ISIS does this, any broadcast sent in the

token or update algorithm will be received by all members of the group that
stay operational, and in the same view of the current membership.

Say that the rule to be implemented is:

All _'oup rn_mb_rs monitor t_ holdc¢ of t_ to/cot If the hoid_ fails, t_ old_st /m_ss

in _ _p a_s o_ _I pa_u, _ toga on as _AalI
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For a solution to be correct, it is necessary to be able to establish two things
about the system. First, because the rule depends on the ordering of group

members by age, this information must be consistent from member to member.

Group views have this property in ISIS.

Secondly, it must be known that any view change reporting a failure will be
ordered after all broadcasts done by the failed process. This ensures that if the

failed procesa did a pate before dying, either no process saw it happen or all
procemes saw the broadcast and are already watching the new holder. That is,

if X_ is the /th action taken by p and Fp denotes the event reporting the failure
of p, we need Vp, i: _ _ Fp. Certainly, in any synchronous execution a failed

process takes no further actions, hence this condition will also hold for any virtu-
ally synchronous execution.

Thus, one could readily implement a fault-tolerant token-passing algorithm in

a virtually synchronous environment.

Notice that the failure ordering property links the atomicity of one broadcast

to the atomicity of a sulazquent one. A conventional atomic broadcast places

an all or nothing requirement on broadcast delivery. But, this doe, not rule out
the transmission of a broadcast a that will not be delivered anywhere because of

a failure, followed by the transmission of a broadcast b from the same sender
that will be delivered. In a virtually synchronous system, such behaviour is not

permitted.

15.8 Other virtually synchronous tools

Virtually synchronous soludom have been illustrated to two of the problems in
the list of tools enumerated at the start of this chapter: replicated data manage.

ment and synchronization. Let us briefly address the other problems in the list.

15.8.1 Distributed execution

There are several ways to distribute an execution over a set of sites in a vimmaly

synchronous setting. The ISIS toolkit supports all of the following:

Pool of seTvers: The Linda system illustrates a style of distributed execution
that called the po01 ofssr0trs. In this method, a set of processes share a collection

of work-description memages, extracting them one at a time, performing the indi-

cated operation, and then placing a completion message back into the pool for
removal by the process that initiated the work. The approach is simple and

lends itself to environments where the processes compoaing a service are loosely

coupled and largely independent of one another. It can be made fault-tolerant

by maintaining some sort of 'work in progress' trace that can be located when a

process is ohaerved to fail. On the other hand, this method of distributed com-

puting is potentially costly because it relies so heavily on synchronous operations.
Were such a system to accen its tuple space frequently, a bottleneck could

develop.
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Kedumiam computation: A redundant computation is one in which a set of

processes perform identical operadom on identical data. The approach was first

proposed by Cooper for use in the Circus system (C___olt:_r(1985)). Redundant
computation hat the advantage of fault-tolerance, and when the operation

involves updates to a replicated state it is often the moat effw.ient way to obtain a

replicated 1-copy behaviour. On the other hand, it is unclear why one would

want to me a redundant computation for an operation that does not change the
state of of the procemes involved. With the exception of a real-time system

operating under stringent deadlines, where it might increase the probability of
meeting the deadline, such an approach would represent an inefficient me of

computational resources. And, in a computation that is at all deterministic, the

method is clearly inapplicable.

Redundant computation is easily implemented in a virtuallysynchrotmm
environment. The event initiating a computation is broadcast to all the

processes that will participate in the computation. They all perform the compu-

tation in parallel and rmpomi to the caller, sending identical results. The caller

can either continue computing at soon at the first result is received, or wait to
collect replies from all participants.

ISIS does not permit redundant computations to be nested unless the applica-

tion makes provisions to handle this possibility. In contrast, the Circus system

supports nested redundant computatiom in a way that is transparent to the user,

even permitting replicated callers to invoke non-idempotent operadom and

operatiom implemented by a group with a replication factor differem from that
of the caller. Cooper discusses these problems, as well as mechanisms for guard-

ing against incorrect replies being sent by a faulty group member, in Gooper

0985).

C.axrttnat_-cohort compu_: A coordinator-cohort computation is one
in which a single process executes a request while other processes back it up,

stepping in to take over and complete the request if a failure occurs before the
response is sent (Birrmm and Joseph (1987a)). Such a computation could make

good me of the parallelism inheritor in a group of processes, provided that

different coordinators are picked for different requests (in this way sharing the
load). Moreover, it can be used even in non-detennini_ic computatiom. How-

ever, if the distributed state of the procea_ involved is changed by a request,

the coordinator must diseribute the updates made to its cohorts at the end of the

computation. In situatiom where a redundant computation was a viable p0mi.

bility, the coat of this style of updating should be weighed against that of run-

ning the entire computation redundandy and eliminating the communication
overhead.

Implementation of a coordinator-cohort computation is easy in a virtually

synchronous setting. The request is broadcast to the group that will perform the

computation. The caller then waits for a single respome. In many applicatiom,
the broadcatt can be done using a one-phase protocol such as CBCAST,

although this decision requires analysis similar to that used for the token pasting

example. The participants take the following actions in parallel. First, they
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rank themselves using such information as the source _f tb_ request, the current

membership of the group doing the request, and the length of time that each
member has belonged to the group. Since all see the same values for all of these

system attributes, they all reach consistent decisions. The coordinator starts

computing while the cohorts begin to monitor the membership of the process
group. The coordinator may disseminate information to the cohorts while doing
this, or use mechanisms like the token for synchronization. When the coordina-

tor finishes, it uses CBC.J_T to atomically reply to the caller and (in the same
broadcast) send a termination message to the cohorts. If a coordinator falls

before finishing, its cohorts react as soon as they observe the failure event (a

broadcast sent prior to the failure is delivered before the failure notification).
The cohorts recompute their ranking, arriving at a new coordinator that ter-

minates the operation. If the original coordinator sent this information while

computing, there are a number of options: the cohorts can spool this and discard

it if a failure occurs, or could apply it to their states and rake over from the

coordinator by picking up from where it died.

Unless the application h sensitive to event orderings, this algorithm can be

implemented with asynchronous CBCASTs. As in the case of the token algo-
rithm, a highly concurrent execution would result.

Subcfivided computation: A subdivided computation arises when each parti-
cipant does part of a requested task. "Ihe caUer collects and assembles these to

obtain a complete result. For example, each member of a process group might

search a portion of a database for items satisfying a query, with the result being

formed by merging the partial results from each subquery. As in the case of a

coordinator-cohort computation, the participants in a subdivided computation

can draw on a number of properties of the environment to divide the computa-
tion. Provided that they all use the same decision rule, they will reach the same

decision. Dealing with failures, however, is problematic in this case. A simple
solution is to identify the results as, for example, 'part I of 3'. A caller that

receives too few replies because some processes have failed can retry the whole
query, or perhaps just the missing part.

15.8.2 System configuralion and reconfill_alion

Above, the term 'configuration' was used as a synonym for the view of processes

groups and proc.eaors in the system -- that is, a list d" the operational members,

ordered by age. However, some systems have a sotS'ware configuration that aug-

ments this view-based configuration and is also used for deciding how requests
should be processed. This suggests that sodbvare designers need access to a broad-

cast primitive Like the one ISIS uses to inform process group members of group

membership change. The GBCAST primitive can be used for this purpose.

Because GBC_,AST is atomic and totally ordered with respect to both CBCAST
and ABC, AST, one can use it to transmit updates to a replicated configuration

data structure shared by the members of a process group. Such an update would
otherwise be implemented just like any other update to replicated data, but



352 K.P. BIRMAN AND T.A. JO@EPH

because of the smong ordering property of the GBCAST, all processes see them in

the same order with respect to the arrival of other messages of all kinds. Thus,

when a request arrives or some other event is observed, the extended configuration

can be used as part of the algorithm for deciding how to respond.

15.8.3 Recovery

When a process recovers, it faces a complex problem, which is solved in ISIS by

the process-_oup joia tool A recovering process starts by attempting to rejoin any

process groups which the application maintains. When invoked, the tool checks to

see if the specified process group already exists and if any other process is trying to

recover simultaneously. A given process will observe one of the following cases:

1. The group never existed before and this process is the first one to join it.
The group is created and the caller's initialization procedure invoked. If

two processes restart simultaneously, ISIS forces one to wait while the other
I'll.overs.

2. The group already exists. After checking permissions, the system adds the

joining process to the group as a new member, tranfferring the state of some

operational member as ofjast before the join took place. The trarafer is done

by repeatedly calling user-provided routines that encode the state into mes-
sages and then delivering these to user-provided routines that decode the

messages in the joining process. The entire operation is a single virtually

synchronous event. All the group members see the same set of events up to
the imtant of the join, and this is the state that they transfer. At_er the

transfer, all the members of the group (including the new member) see the

membership change to include the new member, and subsequently all see

exactly the same sequence of incoming requests (subject to the ordering con-

stralnts of the protocol used to send those requests).

3. The group previously existed but experienced a total failure. The handling
of this case depends on whether or not the group is maintaining non-volatile

logs and, if so, whether or not this process was one of the last to fail and

consequently has an accurate log; Skeen (1985) gives an algorithm for

deciding this. The former case is treated like case (1). In the latter, a

recovery is initiated out of the log file. If the process is not one of the last

to fail, the system delays the recovery until one of the last group members
to fail has recovered, and then initiates a state transfer as in case (2).

In ISIS, a Io8 file consists of a checkpoint followed by a series of requests

that modify the gate. The checkpoint itself is done by performing a state

transfer (see above) into a log file. Thus, recovery out of a log looks like a

state tramfer from a previously operational member, followed by the replay

of messages that were received subsequent to the checkpoint and prior to
the failure. Management and recovery from logs in a virtually synchronous

setting has been examined by Kane (1989).
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ISIS obtainsitsjoin mechanism by composing severalof the toolsdescribed

earlier.For example, the statetranffcrisdoricusingthe coordinatorcohort tool,

described above. To ensure that this is done at a virtual instant in time, a

GBCAST is used to add the new member to the existing process group, and the

tranffcr is triggered just before reporting the membership change to the group

members (including the new member). The mechanism is not trivial to imple-
ment, but is sdll fairly simple. Similarly, solutions to the other aspects of the

problem are consu'ucted out of broadcast protocols and reasoning such as what
we described above for the token passing algorithm.

The ISIS recovery tool illustrates an interesting aspect of virtual synchrony.

On the one hand, the designer thinks about recovery as a series of simple steps:

a site restarts, the recovery manager executed the user's program, the program

requests that it be added, the request is authenticated, a series of state tran_er

messages arrive and finally a new view becomes defined showing the new
member. The sequence is always the same, and no other events ever occur

while it is underway. On the other hand, the same designer treats state transfer

as an atomic event (a sort of 'transaction') when writing software that may

interact with a group while a recovery may be taking place. The recovery
either has not happened yet or it is done, seen from outside there are no other

pomibifiti¢_.Because thiseliminatesa huge number of possiblerace conditions

and casesto deal with, a complex mechanism isrendered simple enough for a

novicetouse correctly.

15.90rthogonality issues

It was observed that for a set of tools to be of practical value they must permit a
step-by-step style of programming. For example, if a distributed program is

built using sornc set of tools, and it is extended in a way that requires an addi-

tional replicated variable, the only code needed should be for managing and

synchronizing access to the new variable. It should not be neccmary m re-

examine all the previous code to eamare that no unexpected interaction will
creep in and break some preexisting algorithm. We say that a set of tools are

orthogonal to one another if they sati._ this property.

A desirable characteristic of the virtually synchronous environment is that

orthogonality is immediate in algorithms that require just a single broadcast
event, because these broadcasts are virtually synchronous with respect to other

even_ in the system. For example, since updates to a replicated variable appear

to be synchronous, introducing a coordinator-oohort computation for some other

purpme in a program that uses such updates should not 'break' the replicated

data mechanism. More complex mechanisms, such as the ISIS recovery

mechanism, are made to look like a single synchronous event, even when they

involve several distinct subevents. A consequence is that one can build so,'ware
in ISIS by starting with a non-distributed program that accepts an R.PC-style of

interaction, then extending it into a distributed solution that uses a process group
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and replicated data, introducing a dynamically changing distributed
configuration mechanism, arranging for automated recovery from failure, and so

forth. Each change is virtually synchronous with respect to the prior code,

hence no change will break the pre-existing code. The same advantage applies

in a setting like the Linda system: soRware here can he developed by debugging

a single process that uses the topic-space primitives, and once it is operational
replicating this procesa to the extent desired.

15.10 Scaling, synchrony and virtual syne.hrony

It ha, been observed that a genuinely synchronous approach to distributed com-

puting will have scaling problems. Of the framework, listed bove, only HAS
implements such an approach, and its performance degrades quite explicitly as a

funcdon of the number of sites in the network, because a larger network hat
larger expected delays over its communication links. This increases the

minimum delay before a broadcast can be delivered, and, became HAS does not

support an asynchronous broadcast, the performance of application )0_,are is
directly impacted.

A system like ISIS has a slightly different problem. Here, the basic protocoh
are essentially linear in the size of process groups (see Birman, J_ph, and

Schmuck (1989)). However, several parts of ISIS involve algorithms that scale
with the number of s_s in the network. To address this issue, a recent version of

ISIS introduced a notion of scope into the system. The idea of this is to restrict

these algorithms to small collectiom of sites in a way that does not compromise

the correcmess of the overall system. The resulting system has been scaled up to

more than one hundred sites without impoaing a severe load on any machine,
although prncem gm_s must not grow to include more than 20 or 30 members

(here, we amume a 10 ibit network and 2--5 MIPS workatatiom). Current

research is now focmod on introducing a notion of hierarchy for use when pro-

cess groups get very large. These figures arc based on _t experience with

those aspects of the ISIS system that will not change when better algorithms are

imtalled. Thus, ISIS potentially scales to moderately large networks, but it

unlikely to scale up into geographically distributed settings with tens of
thomanch or milliom of sites. An open question is whether there exists some

other architecture that would yield virtual synchrony and high leveh of con-
currency, as does ISIS, but would scale without limit.

Finally, comider the quorum schemes, which also achieve virtual synchrony.

These degrade in a way that it completely determined by the quorum size and

the number of failures to be tolerated. While procem groups stay small, one

would expect bounded performance limited by _ bandwidths, and lxx_rer

than what can be achieved using asynchronous protocols. The quorum

approach is clearly unsuitable for systems that replicate data at very large
numbers of locatiora.
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To summarize, there seems to be good reason to view virtual synchrony as an

effective programming tool .for small and medium size networks, and with the

use of hierarchical structuring techniques should even be able to encompass a

typical medium-size factory or company. In much larger settings, other
approaches yielding weaker correcmess guarantees would be needed.

It siaould also be noted that our collection of tooh focuses on programming 'in

the mmU'. The design and implementation of soma'are for a factory requires

something more: a methodology for comp_ing larger systems out of smaller

components, and perhal_ a collection of tooh for programming in the large.

The former would conmt of a formalism for describing the behaviour of system

components (which could themselves be sul_tantial distributed _ry3tems) and how

components interact with one another, independently of implementation. The
latter would include _,:fftware for cooperative application development, monitor-

ing dependencies between components of a large system and triggering appropri-

ate action when a change is made, file systems with built in replication, and
mechanisms with which the network can be a_ed to monitor for arbitrary u_r-

specified events and to trigger user-specified actions when those events occur.

These are all hard problems, and any treamaent of them is beyond the scope of

discussion. Moreover, the current state of the art in these areas is painfully

deficient. Substantial progress is needed before it becomes practical to talk

about building effective and robust network solutions to large-scale problems.

15.11 An example of ISIS software and performance

It might be interesting to see a sample of a typical ISIS program. The program
shown below solves the drilling problem in ISIS. In contrast to the Linda solu-

tion, the method is fauit-tolerant and supports dynamic process recovery. As
before, the code will be in two parts: the code for a proceu that issues the origi-

nal work request to the cell controller, and the distributed algorithm run in

parallel by the control procemes. We start with the code for making a request:

I* Define • type ceLLed hoLe 1: for describing holes */

1:ypede f struc1:

{
/* Descrip1:ton of hole */

int h_x. h_F. .... ; /* Descrtp1:ton of 1:he hole */

/. Runttae veriebLe8 set: bF aLgori1:hn */

• ddress h_driLL;

int h_s1:a1:e;

} hole_t;

#define X NULL 0

#define H ASSIGNED 1

#define H DRILLING 2

#define H DONE 3

/e Process the1: will drill i1: */

/* S1:•tus. lee below w/

/* Int1:t•L s1:•te */

/* h driLL his been set */

/* D_illing underway */

/* Hole conpLe1:ed */
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main()
(

address driller;
in, nholes, nrepltes, checkltmt[MAXHOLES3, ntocheck;
hole t hoLes[MAXNOLES];

... initialize nholes end hoLes[O..nhoLes-1] ...

/* Lookup address of drill service */

driller - pg_lookup("/bldglilceLL22-a/driller") ;

nrepLies - cbcast(drilLer, UORK_REG,
/* Message to broadcast */
"{XdtXd,...,Xa,Xd)[]", holes, nholes,

1 /* One reply wanted */,
/* Reply format */
"(_d)[]", checklist, gntocheck);

if(nrepkies !- 1)
panic("OrtlL service ts not svaJLeblCh");

Jf(ntocheck !- O)
(

prtntf("Job requires manual recheck. PLease check._h");
for(4 - O; t < ntocheck; J++)
{

hole t *h - &holes[checklist[Ill;
prin_f("Hole at Xd,Xd ..._", ...);

)
printf("Type <cr> when finished rechecking: ");

whtle(getchar() i- _h') continue;
)

ee.

)
etc .e.

program impom the list of entry points from the drill service, which defu_

the WORK_REQ entry to which the work request is being u'ammitted. To a reader

familiar with the C programming language, the code will be serf-explanatory

except for the arguments to cbcast, which are the group to transmit to (a long

form accepting a list of groul_ is also supported), the entry point to invoke in

the destination procemes, the format of the data to transmit (here, an array d"

structure elements), the array itself and its length, the number of replies desired

(1), the format of the expected reply (an array of integers), a place to copy the

reply, and a variable that will be set to the length of the reply array.

The cell controller requires more code:

/e A typical drill controller */

// include "hole-desc.h"

main()
{

/* Bind the two entry points to handler routines *1
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isis entry(WORK REQ, work req);

Isls_entry(DRILLING, drilling);

/* Start ISlS lightweight task subsystem */

isis_mainloop(restart task);

/* Task to restart this process group member *1

restart task()

{

/* Join or create group, obtain current state */

driller - pg_join("/bldg14/cel122-a/drilLer",

/* On first time create, call first time init */

PG_INIT, first_tile_init,

/* On joining an existing system, do state transfer */

PG_XFER. state_xfer out, state xfer_in,
/* Call lonitor routine on lembership changes */

1

PG_MONITOR, monitor_routine,
0);

)

/* ELobaL variables */

ant chockList[MAXHOLES], ntocheck;

/* Reception of a new work request (WORK REQ entry) */
l

work_req(msg)

message *msg;

(

int nholes;

hole t hoLes[MAXHOLES];

pgroup_view *pgv - pg getview(driLler);

msg_get(msg, "(Xd,Xd,...,Xa,Xd}C]", holes, ImhoLes);

for(n - O; n < nholes; n++)

(

hole t *h • tholes[n];

h->h who - schedule(h, pgv);

if(<_trst hole assigned to this process>)

h->h state • H ORILLINE;
else

h->h_state • H_ASSIENED;

)

t fork(drill task);

n_odrill - n_oles;

ntocheck • O;

cur roq • msg;

send_rap();

send_rap()
{

t wait(&work_done);

i_(pg_rank(my_addrass, driller) -- 1)

I* OLdest process replies for group */

357
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reply(cur req, "{%d)[]", checklist, ntocheck);

cur req • (aessage*)O;

int drill_task_active;

/* How many failures we can tolerate at a time */

#define N FAULTS TOLERATED 1

drill_task()
{

int done__tth, n;

char anIw[N_FAULTS_TOLERATED];

++drill task active;

n = nex__hot;(ay address, holes);

whiLe(n != -1)

{

hole t *h • &hoLesCnS;

driL_ hole(h);

done _ith = n;

n = next hole(holes);

/* Async. broadcast to inform others of my next action */

cbceat(drilLer, DRILL/NE,

"Za,Xd,Xd", my_address, n, done_with,

N FAULTS TOLERATED+l,
"Z¢", &anew);

)

--drill_task active;

I* Znvoked when a DRILLING cbcest is done *1

drilling(msg)

(

aso_get(msg. "ZaoZdeXd"o who. &next, &done);

/* Updlte status of holes List :/

hoLesEdone_.h state • H_DONE;
if(next !• -17

holeeCnext].h_state • H_DRILLINE;

/e When done, awaken send_rap() */
tf(--ntodr_Lt -• O)

t_stgnaL(&work_done);

/* Confirm thit we got the message *1

reply(meg, "_c", '+')"

I* When t process fails, reassign its remaining work */

monitor routine(pgv)

pgroup_vtew *l)gV;

{

int must drill • O;



15 EXPLOITING REPLICATION IN DISTRIBUTED SYSTEMS 359

if(Pgv->pgv_event ! = PGV_DIED)

return;

for(h • hoLes; h < &holes[nhote$]; h++)

if(h->h who == pgv->pgv died)
{

if(h->h_state -= H_ASSIGNED)

{
h->h who " scheduLe(h, pgv);

if(sddr issine(h->h who))
m

++must driLL;

)
else if(h->h state -,, H DRILLING)

{

h->h state • H_DONE;

checkList[ntocheck]++ = h-hoLes;

if(--ntodrtlt == O)

t_s i gna l (&work_done);

)
)

if(must driLL && driLL task acttve == O)

t__ork(drt l l_task_; -

)

The above code is certainly longer than for the Linda example, and it looks far

more more complex than the Linda example. However, the L/nda example was

not fauit-tolerant and did not address the schedu_ng aspects of the problem.
Moreover, our solution is actually quite simple. It works as follows.

Each controller process joins a driUer process group. The group as a whole
receives each request by accepting a message to the work_req entry point. In

parallel, all members schedule the work, noting which hole each of the other

pror.em_ is currently drilling and marking all others as assigned. A lightweight

task is forked into the background to do the actual drilling; it will share the

address space cell controller with the task running work_req, using a nonpre-
eruptive 'monitor' style of mutual exclusion under which only one task is execut-

ing at a time, and context switching occurs only when a task pauses to wait for
something. The work req _ now waits for drilling to be completed.

The dri t t_tamk operates by drilling the next assigned hole, then broadcasting
to all group members when it finishes this hole and moves on to the next one.

The broadcast must be done synchronously, waiting until enough replies are

received to be sure that the memage has reached at least N FAULTS_TOLERATED

rem(xe dcginadom (became the sender will receive and rep_y to its own mes-

sage, we actually wait for one more reply above this threshold). The point here

is to be sure r.hat even if N_FAULTS_TOLERATED drill processes crash, the broadcast

will still be completed became some operational procem will have received it.

Each group member marks the previous hole as H_DONE and the next one as
H DRILLING when this broadcast arrives.

If a process fail,, the other group members detect this when their monitor rou-

tines are invoked by ISIS. They reassign work, moving any hole that the failed
proces was actually drilling to the check list. Any process that has ceased
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Figure15.10Holesdrilledper secondwitha one-_vond per-hole
delay.

drilling (and hence no longer has an active driLL_t,sk spawns a new one at
this time.

A normal ISIS application would also include code for initializing the group at

cold-start time and for transferring the state of the group to a joining member, by
encoding it into one or more messages. This code has been omitted above.

What about performance? Figure 15.10 and Figure 15.11 graph the perfor-

mance of th_ application program, in holes-per-second drilled by the entire

group as a function of the number of members. These figures were generated on

a network of SUN 3/60 workstations, otherw_ idle, running release 3.5 of the

SUN UNIX system and communicating over a 10Mbit Ethernet. Figure 15.11
was based on a control program for which the simulated delay moclated with

moving the drill units and drilling holes was l-second per hole. Figure 15.11

used a delay of zero. In the absence of any ISIS overhead, the tint graph would

a linear speedup and numbers would all be infinite in the second graph.
Thus, the communication overhead impmed by this version of ISIS becomes

significant when the group reaches six members, limiting the attainable speedup

for drilling hole, with th_ delay factor. Since the number of _ges K_vtt per
second grows as the square of the size of the group in this example, these curves

are not unreasonable ones. More detailed performance figures for ISIS are

available in Birman and Joeeph (1987a), and Birman, Joseph, and Schmuck
(1989).
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Figure 15.11 I-Io[a drilled per second with a zero-_cond per-hole
delay.

15.12 Them-etical properties of virtually synchronous systems

chapter concludes with a review of some theoretical results relevant to the

behaviour of virtually synchronom systems.

15.12.1 How faithful can a virtually synchronma execution be to

the phydcai one?

A system like ISIS zela to provide the ilhaion of a synehronot= execution while

actually executing asynchronotaly. Moreover, unlike IAnda or HAS, failures are

'events' in the virtually synchronota execution model used by ISIS. This leads
to limits on the extent to which the model can be faithful to reality. For exam-

ple, it is impomible to emure that a virtually synchronous execution will present

failurm in the precise sequence that physically occurred with respect to ocher

eventa. Specifically, in a situation where the system is about to deliver a broad-
cast, it cannot prevent a physical failure from occurring just as the broadcast

delivery is taking place. At one destination, the failure has occurred 'after'

delivery, but at the other it is 'before' delivery. From this it can be seen that a

system like ISIS might sometimes be forced to claim that a message was

delivered to a procem that had actually crashed before delivery took place.
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A relevantthcortqjcalresult(Fisher,Lynch, and Patterson(1985))shows that

itisimpossibleto reach distributedagreement inan asynchronoussystem subject

to failures.Addirional work along these lineswas done by Hadzilacos and
reportedin Hadzilacos (1984). These resultslimitwhat isachievableina virtu-

allysynchronous system. In particular,thisestablishesthat ISIS cannot avoid

allriskofincorrectlycomidcring an operationalsitetohave failed.

On theother hand, itispossiblefora systemtoavoid claiming anything incon-

sistentwith the o&cn_bI¢ world. This isdone by introducingagreement prot(x_h

todecide what pictureof a fundamentally uncertainevent to providein itssyn-
chronom world model, and then presentthisto itsusersina consistentmanner.

This iswhat ISIS does. Unlessa failedsiteor processrecoversand can be queried

about what itobserved just before failing,code that rum in ISIS can never

encounter an inconsistency. Moreover, when there is some doubt about emuring
that all processes have really observed a broadcast or other event, th_ can be

arranged by briefly running the system synchronously -- for example, by asking
those procemes to reply aRer they have seen the event and waiting for the replies.
This is comparable to deferring external actions in a tramactional system until the
transaction has reached the prepared-to-commit stage.

15.12.2 State machine approach

It was suggested above that virtual synchrony be viewed as an extension of

tramactional serializability that introduces process groups and atomic group

addressing while eliminating the tramactiom. Virtual synchrony is at least as
closely related, however, to work that was done on a theoretical abstracdon

called the stat¢ nuu_mt approach to distributed computing. State machines were

originally introduced by Lamport, and work in the area is surveyed by

Schneider (1986). In this approach, a (static) set of proccmes interact through a
logically centralized service termed the stat_ nmchme; the machine chooses an

order in which requests should be executed and delivers them to the participants.

In the terms of _ chapter, a state machine implements a clmcly synchronom
environment. In moat theoretical treaunents, state machines are used as a fault-

tolerance mechanism, and described in terms of a Byzantine failure model. Thia

may be one reamn that their practical vaiue was not immediately perceived.

ISIS can then be understood as a state machine implementation that uses a

series of optimizatiom to make the approach viable in an environment subject to

a leas difficult clam of failures. To the best of our knowledge, this issue was
never examined directly in a state machine context.

15.12.3 _ and using IPC comeax infm'mation

There has been ocher work on communication mechanisms that preserve some
form of 'context information', which CBC.d_T does by comtraining the order in

which messages are delivered. For example, Jefferson's _,m_ua/ trait approach

implements a causai delivery ordering constraint using rollback (Jefferson
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(1985)). The mechanism operates in a point-to-point communication setting

where messages arc timestamped and must be delivered to each process in

increasing timestamp order (this is common in event-based simulation systems).
The problem that arises is that although processes are comtrained to use mono-

tonically increasing timestamps for their trammissions, it is impossible to predict

just when any given process will need to transmit to any other. If a message is

received with timestamp t, it should be delayed if some other process might send
a message with timestamp t' < t to the same destination. But, without waiting

for all processes to advance beyond time t, how can this property be insured? A

virtual time system operates by making the 'optimistic' assumption that no such

earlier message will be sent, permitting the delivery of interprocess messages as
soon as they arrive. After delivering a message at time t, if a message does

arrive with timestamp t' < t, the system simply rolls the destination process

back to a time prior to t' ('unsendinge any messages it issued during this period,

which may trigger further rollbacks), then delivers t' and t in the correct order.

The scheme requires the system to be able to make checkpoints and that roll_

back be cheap. The system of Strom and Yemeni (1985) implements a closely
related programming language.

Notice that the timestamping scheme described above is really intended to

represent time during a discrete simulation, and hence has a different purpose

than the _ operator introduced earlier. In contrast, Peterson (1987) (Peterson,
Buchhoiz, and Schlichting (1984)) has developed a communication mechanism

that represents -* explicitly and then uses this to enforce causal delivery order-
hags. His system, Psync, includes a small amount of event ordering information

in messages that are sent. On reception _ a message, a process can invoke sim-

ple primitives to test whether there may be outstanding prior messages, or to

compare the orders in which two messages were sent. In effect, they permit the

interrogation of _. Peterson has completed an implementation of these primi-
fives in the X-kernel, and used this to build several Psync applications. These

include reliable broadcast protocols with the ordering properties of CBC.,AST,
ABCAffF and GBCAST, although lacking dynamic process group addressing.

15.12.4 When can a proHem be solved _nously?

Schmuck has looked at the question of when a system specified in terms of syn-

chronous broadcasts can be run correcdy using asynchronous ones (Schmuck

(1988)). He defines a system to be asy_r0msa if it admits an implementation in

which every broadcast can be delivered immediately to its initiating process,
with remote copies of the message being delivered sometime later. Failure

broadcasts are not considered, although they could be added to the model

without changing any of the results. Thus S,_c is the clan _ all system
specifications describing problems that can be implemented in this efficient,

asynchronous manner. He also introduces the concept of a lia¢ari_atim _,rator, a

function that maps certain partially ordered sets of events to legal histories. In a
theorem he shows that for all specifications S:
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S E/ S,_= ¢. 3 a l_amat/0n 0p_atorfor S.

He proves the only-if direction by showing how to construct an implementation

for a specification S, based on its linearization operator, using a communication
primitive similar to CBC, AST. The other dir_tion is proved by contradiction.

The result establishes that Schmuck's implementation method is comp/et¢ for the

clam S=,_, that is, the method yields a correct implementation for all
specificafiom S E S=:,,¢.

Schmuck's construction method depends on finding a linearization operator
for a given specification. Unfortunately, whether a given specification S is in

S=_ is undecidable. It is immediately clear that there exists no general method

for finding a linearization operator for S. However, Schmuck does propose

methods for solving this problem for certain subclasses of S=z_. The basic
characteristic of these subclasses is that they have linearizadon operaton deter-

mined enurely by commutativity properties of the broadcasts done in the system.
Moreover, Schrnuck shows how to consu'uct mixed specifications, in which
_T is used as c&en as pnssible, but ABC_ST is still available for situatiom

in which _ cannot be used. These results can be used to 'automatically'
construct a linearizafion operator, and hence an optimal asynchronous broadcast
protocol, for a problem like the token-passing ones described above. Interest-

ingly, when we showed that token request, token passing and replicated updates

could be totally ordered along the path the token follows, we essentially
described the construction of a linearization operator for that problem. Thus,

Schmuck's work formalizes a style of argument of important practical relevance.

Herlihy and Wing have also looked at the cost of achieving 'locally' ordered

behaviour in distributed systems. This work develops a theory of linearizability,

a property similar to serializability, but ol_erved from the perspective of the

objects performing operatiom rather than from the perspective of the processes
acting upon those processes (Herlihy and Wing (1987)).

15.12.5Knowledpmvirtu_y_nchronomsyM:enu

Some recent work applies logics of knowledge to protocols similar to

and ABCAST. The former problem was examined by Taylor and Panangaden
(1988), who develop a formalism for what they refer to as amawrent a_mn

knowbdge. This kind of knowledge is obtained when an &_/nchronom CIBC,AST
is performed by a process that subsequently behaves as if all the destinations

received the message at the instant it was sent. In ISIS, such a process will

never encounter evidence to contradict this assumption. Taylor and Panagaden
formally characterize the power of _ style of computation, and then use their

results to analyse algorithm= like the concurrent update discussed above.

Neiger and Toueg have examined the relationship between the total ordering
of events in an ABCAST protocol and the total ordering that results from incor-

porating a shared real-time clock into a distributed syatem (Neiger and Toueg
(1987)). They characterize the settings under which a broadcast algorithm
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written to use a distributed clock could be implemented using an ABC, AST pro-

¢ocol and a logical clock (Lamport (1978)).
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